MODEL QUESTION PAPER

Physics

XII Standard (CBSE)

Time: 3 Hours

Max. Marks: 70

General Instructions:

1. There are 35 questions in all. All questions are compulsory.
2. This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
3. Section A contains eighteen MCQ of 1 mark each, Section B contains seven questions of two marks each, Section C contains five questions of three marks each, section D contains three long questions of five marks each and Section E contains two case study based questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in section B, C, D and E. You have to attempt only one of the choices in such questions.
5. Use of calculators is not allowed.

SECTION-A

Answer all the questions
$18 \times 1=18$

S.No.	Questions	Marks
1	When a body is connected to the earth, then electrons from the earth, flow into the body. It means that the body is (a) unchanged (b) an insulator (c) positively charged (d) negatively charged	1
2	If the uniform electric field exists along X-axis, then equipotential is along (a) XY-plane (b) XZ-plane (c) YZ-plane (d) anywhere	1
	The net charge on a current carrying conductor is (a) zero (b) constant (c) varying (d) negative	1
4	A bar magnet of magnetic moment M is cut into two parts of equal length. The magnetic moment of either part is (a) M (b) $M / 2$ (c) $2 M$ (d) Zero	1
5	The value of peak AC in a 220 V mains is $(\mathrm{a}) \sqrt{22} 0 \mathrm{~V}(\mathrm{~b}) \sqrt{110} \mathrm{~V}(\mathrm{c}) \sqrt{220 \mathrm{~V}}(\mathrm{~d}) \sqrt{440 \mathrm{~V}}$	1

6	Lenz's law is associated with principle of conservation of (a) charge (b) mass (c) energy (d) momentum	1
7	The direction of transmission of electromagnetic wave is (a) Parallel to E (b) Parallel to B (c) Parallel to $B \# E(\mathrm{~d})$ Parallel to $E \# B$	1
8	The direction of magnetic field produced by a current-carrying small element of any shape is given by (a) Lenz law (b) newton's law(c) right-hand thumb rule(d) Fleming left-hand rule	1
9	The radius of curvature of plane mirror is (a) infinite (b) zero (c) +5 cm (d) -5 cm	1
10	The interference occurs in which of the following waves? (a) transverse (b) longitudinal (c) electromagnetic (d) all of these	1
11	If momentum of a particle is doubled, then its de-Broglie's wavelength will (a) be half (b) be two times (c) be four times (d)remain unchanged	1
12	Rutherford's α-particle experiment showed that the atoms have (a) proton (b) nucleus (c) neutron (d) electrons	1
13	Among the following whose mass is not equal to the mass of an electron? (a) Proton (b) Hydrogen (c) Positron (d) Neutron	1
14	At 0 K temperature, a p-type semiconductor (a) does not have any charge carrier (b) has few holes and few free electrons (c) has few holes but no free electron (d) has equal no. of holes and free electrons	1
15	Minimum number of capacitors of $2 \mu \mathrm{~F}$ each required to obtain a capacitance of $5 \mu \mathrm{~F}$ will be (a) 4 (b) 3 (c) 5 (d) 6	1
16	Assertion: X-ray travel with the speed of light. Reason: X-rays are electromagnetic rays. (a) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion. (b) Both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion. (c) Assertion is correct but Reason is incorrect. (d) Assertion is incorrect but Reason is correct.	1
17	Assertion: Blue colour of sky appears due to scattering of blue colour. Reason: Blue colour has shortest wave length in visible spectrum.	1

	(a) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion. (b) Both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion. (c) Assertion is correct but Reason is incorrect. (d) Assertion is incorrect but Reason is correct.	
	Assertion: Standard optical diffraction gratings cannot be used for discriminating between X-ray wavelength. Reason: The grating spacing is not of the order of X-ray wavelengths. (a) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion. (b) Both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion. (c) Assertion is correct but Reason is incorrect. (d) Assertion is incorrect but Reason is correct.	1

SECTION-B

Answer any six questions

$$
7 \times 2=14
$$

19	A hollow metal sphere of radius 5 cm is charged such that potential on its surface is 10 V. What is the potential at the centre of the sphere?	2
20	Two identical cells, each of emf E, having negligible internal resistance, are connected in parallel with each other access an external resistance R. What is the current through this resistance?	2
21	State two characteristic properties distinguishing behaviour of paramagnetic and diamagnetic materials.	2
22	What is the basic difference between magnetic and electric lines of force? OR	2
23	Define stopping potential. Write the expression for the de-Broglie wavelength associated with a charged particle having charge q and mass m, when it is accelerated by a potential.	2
24	Consider two different hydrogen atoms. The electron in each atom is in an excited state. Is it possible for the electrons to have different energies but the same orbital angular momentum according to the Bohr model?	2

25	Give two advantages of LED's over the conventional incandescent lamps.	2
	SECTION-C Answer any six questions $5 \times 3=15$	$5 \times 3=15$
26	What is the nature of electrostatic force between two point electric charges q_{1} and q_{2} if $1 . q 1+q 2>0$?, 2. $q 1+q 2<0$?	3
27	A circular coil of closely wound N turns and radius r carries a current I. Write the expressions for the following: 1. The magnetic field at its centre. 2. The magnetic moment of this coil.	3
28	A bar magnet is moved in the direction indicated by the arrow between two coils $P Q$ and $C D$. Predict the directions of induced current in each coil. R State a rule to determine the direction of current induced due to the motion of a conductor in a perpendicular magnetic field.	3
	Conduction and displacement currents are individually discontinuous, but their sum is continuous. R Name the parts of the electromagnetic spectrum which is (i) suitable for RADAR systems in aircraft navigations. (ii) used to treat muscular strain. (iii) used as a diagnostic tool in medicine. Write in brief, how these waves can be produced.	3
30	What is difference between diffraction and interference?	3

SECTION-D

Answer all the questions

| | What do you understand by the resistivity of a conductor? Discuss its temperature
 dependence for a
 1. Metallic conductor 2. Semiconductor 3. Ionic conductor 4. Electrolyte. |
| :--- | :--- | :--- |
| Determine the potentials at the points X_{1} and X_{2} in the circuit. | |

SECTION-E

Answer all the questions

