MODEL QUESTION PAPER

MATHEMATICS

XII-STANDARD (STATE BOARD)

PART-I

Maximum Marks: 90

All Questions are compulsory.

$20 \times 1 = 20$

1	If $ adj (adj A) = A ^9$, then the order 1) 3 2)		ix A is 3) 2	4) 5	1
2	If A = $\begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$, then adj (adj			ER	1
	$1) \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} $ 2)	$\begin{pmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{pmatrix}$	$3) \begin{pmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3	$i^{n} + i^{n+1} + i^{n+2} + i^{n+3} is$ 1) 0 2)		3) -1	4) i	1
4	If $\omega = \operatorname{cis} \frac{2\pi}{3}$, then the number of d 1)1 2) 2			4) 4	1
5	A zero of $x^3 + 64$ is 1) 0 2)	4	3) 4i	4) -4	1
6	The value of $\sin^{-1}(\cos x), 0 \le x \le 1$		π		1
	1) $\pi - x$ 2)	$x-\frac{\pi}{2}$	3) $\frac{\pi}{2} - x$	4) x - π	

-					
7	여행 집에 들었던 것 같은 것을 위한 것		en egge an anna an a	4,1) and touching y	– axis is 1
	$x^{2} + y^{2} - 5x - 6y + 9 +$	$\lambda(4x+3y-19)=0 \text{ whe}$	re λ is equal to		
	1) $0, \frac{4}{9}$	2) 0	3) $\frac{40}{9}$	4) $\frac{-40}{9}$	
8	The values of m for v	which the line $y = mx + i$	$2\sqrt{5}$ touches the hyperb	pola $16x^2 - 9y^2 = 144$ are t	he roots of 1
		hen the value of $(a+b)$		20	
	1) 2	2) 4	3) 0	4) -2	A
9	If \vec{a} and \vec{b} are paralle	l vectors, then $\left[\vec{a}, \vec{c}, \vec{b}\right]$ is	s equal to		1
	1) 2	2) -1	3) 1	4) 0	
	The volume of a other	e is increasing in volum	a at the rote of 3 mon ³ /	sec The rate of change of	its radius 1
10	when radius is $\frac{1}{2}$ cm	e is mereasing in volum	e at the fate of shem t	see The fate of change of	its fadius
	(1) 3 cm/s	(2) 2 cm/s	(3) 1 cm	n/s (4) $\frac{1}{2}$ c	m/s
	(1) 5 cm 5	(2) 2 cm/s		$(4)\frac{1}{2}$	110'5
11	The point of inflection	of the curve $y = (x-1)^3$	is		1
	(1) (0,0)	(2) (0,1)	(3) (1,0)	(4) (1,1)	
12	A circular template has a radius of 10 cm. The measurement of radius has an approximate error of 0.02 cm. Then the percentage error in calculating area of this template is				of 0.02 cm. 1
	(1) 0.2%	(2) 0,4%	(3) 0.04%	(4) 0.08%	
13	The value of $\int_{0}^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$	= is			1
	1) $\frac{\pi}{6}$	2b) $\frac{\pi}{2}$	3) $\frac{\pi}{4}$	4) π	
14	$\int_{0}^{x} f(t) dt = x + \int_{0}^{-1} f(t) dt$) <i>dt</i> , , then the value of f(1) is		1
	$\prod_{i=1}^{n} \int_{0}^{1} f(i) di = x + \int_{x}^{1} \int_{0}^{1} f(i)$	an,, alen me value or h	.,		

	$3x^3 + 4$ 4) $y = x^3 + 5$ + $x^{\frac{1}{4}} = 0$ are respectively	1		
	$+x^{\frac{1}{4}}=0$ are respectively	1		
3) 2, 6				
	4) 2, 4			
ability density function	$f(x) = \overline{x^3} x \ge 1$ 0 $x < 1$ Which of the	e following 1		
	exists but variance does not exist nee exists but Mean does not exist			
If the length of the perpendicular from the origin to the plane $2x+3y+\lambda z = 1, \lambda > 0$ is $\frac{1}{5}$, then the value of λ is				
2 3) 0	4) 1			
What is the probability t	at he sells computers to one in o that he will sell a computer to en	-		
3) $\frac{19^3}{20^3}$	4) $\frac{57}{20}$			
	is a tautology. s a contradiction	1		
	e contains only <i>T</i> then it contains only <i>F</i> then it i	The statement itself. The contains only T then it is a tautology. The contains only F then it is a contradiction then $p \leftrightarrow q$ is a tautology.		

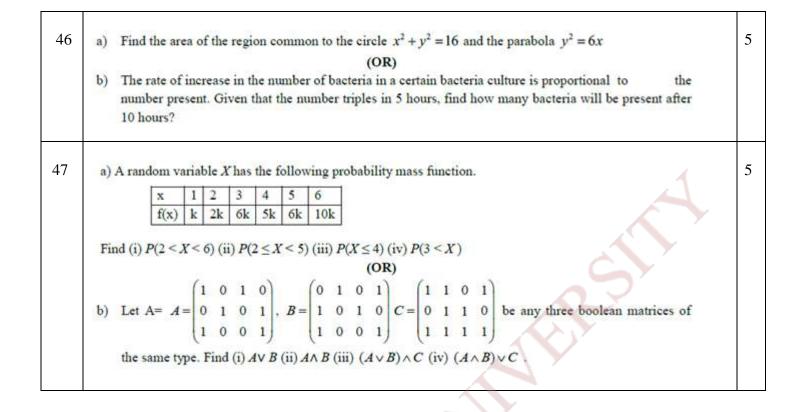
Г

PART-II

	Answer any seven questions.Question No. 30 is compulsory $7 \ge 2 = 14$	
21	Solve the following system of linear equations, using matrix inversion method: $5x + 2y = 3$, $3x + 2y = 5$.	2
22	Obtain the Cartesian equation for the locus of $z = x + iy$ in each of the following cases: $ z - 4 = 16$	2
23	Find a polynomial equation of minimum degree with rational coefficients, having $2i+3$ as a root.	2
24	The parabolic communication antenna has a focus at $2m$ distance from the vertex of the antenna. Find the width of the antenna $3m$ from the vertex.	2
25	Find the angle between the line $\vec{r} = (2\hat{i} - j + k) + t(\hat{i} + 2j - 2k)$ and the plane $\vec{r} \cdot (6\hat{i} + 3j + 2k) = 8$.	2
26	Find two positive numbers whose sum is 12 and their product is maximum.	2
27	Assuming $\log_{10} e = 0.4343$ find an approximate value of $\log_{10} 1003$.	2
28	Evaluate $\int_{0}^{1} x dx$ as the limit of a sum.	2
29	Three fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred.	2
30	Establish the equivalence property connecting the bi-conditional with conditional: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	2

PART-III

Answer any seven questions.Question No. 40 is compulsory $7 \ge 3 = 21$


31	If $A = \begin{pmatrix} 4 & 3 \\ 2 & 5 \end{pmatrix}$ find x and y such that $A^2 + xA + yI_2 = O_2$. Hence, find A^{-1} .	3
32	Find the square roots of 4 + 3i.	3
33	Solve the cubic equation : $2x^3 - x^2 - 18x + 9 = 0$ if sum of two of its roots vanishes.	3
34	Solve $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$ for $x > 0$	3
35	Find the torque of the resultant of the three forces represented by $-3\hat{i}+6j-3k$, $4\hat{i}-10j+12k$ and $4\hat{i}+7j$ acting at the point with position vector $8\hat{i}-6j-4k$, about the point with position vector $18\hat{i}+3j-9k$.	3
36	Using the l'Hôpital Rule prove that, $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}} = e$	3
37	Find the partial derivatives of the following functions at the indicated points $h(x, y, z) = x \sin(xy) + z^2 x, \left(2, \frac{\pi}{4}, 1\right)$	3
38	The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function $f(x) = \begin{cases} 3e^{-3x}, & x > 30\\ 0, & elsewhere \end{cases}$. Find the expected life of this electronic equipment.	3
39	Let * be defined on R by $(a^*b) = a + b + ab - 7$. Is * binary on R ? If so, find $3^*\left(\frac{-7}{15}\right)$	3

PART-IV

Answer all the **questions** .

$$7 \ge 5 = 35$$

1	Answer all the questions . $7 \ge 5 = 35$	
41	 a) Investigate for what values of λ and μ the system of linear equations. x + 2y + z = 7, x + y + λz = μ, x + 3y - 5z = 5. (OR) b) If z = x + iy and arg (z-i/(z+2)) = π/4, then show that x² + y² + 3x - 3y + 2 = 0. 	5
42	a) Solve the equation $6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution. (OR) b) Solve : $\cot^{-1}x - \cot^{-1}(x+2) = \frac{\pi}{12}, x > 0$	5
43	 a) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find the angle of projection. b) Prove by vector method that sin(α-β) = sin α cos β - cos α sin β 	5
44	 a) Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the points (3, 6, -2), (-1, -2, 6), and (6, -4, -2). (OR) b) Find the acute angle between y = x² and y = (x-3)². 	5
45	a) Sketch the graphs of the following functions: $y = -\frac{1}{3}(x^3 - 3x + 2)$ (OR) $w(x, y, z) = xy + yz + zx, x = u - v, y = uv, z = u + v, u, v \in R$. Find $\frac{\partial w}{\partial s}$, $\frac{\partial w}{\partial v}$ and evaluate them at $\left(\frac{1}{2}, 1\right)$ b)	5

