MODEL QUESTION PAPER

MATHEMATICS

XII-STANDARD (STATE BOARD)

Time : $\mathbf{3 . 0 0} \mathbf{h r s}$
Max Marks : 90

PART I

i) All questions are compulsory.
ii) Choose the most appropriate answer from the given four alternatives and write the answer along with the code.

S.No.	Questions	Marks
1	If $A\left[\begin{array}{llll}1 & -2 & 1 & 4\end{array}\right]=\left[\begin{array}{llll}6 & 0 & 0 & 6\end{array}\right]$, then $A=$ (1) $\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]$ (2)[$12-14]$ (3) $[42-11]$ (4) $[4-121]$	1
2	If Crammar's rule can be applied then (1) $\Delta \neq 0$ (2) $\Delta=0$ (3) $\Delta x=0$ (4) $\Delta x \neq 0$	1
3	Find the value of $\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)$ (1) $1+i$ (2) i (3) 1 (4)0	1
4	A zero of $x^{3}+64$ is (1) 0 (2) 4 (3) $4 i$ (4) -4	1
5	If $x+y=\frac{2 \pi}{3}$; Then $x+y$ is equal to (1) $\frac{2 \pi}{3}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{6}$ (4) π	1
6	Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ parallel to the straight line $2 x-y=1$. One of the points of contact of tangents on the hyperbola is (1) $\left(\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ (2) $\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (3) $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (4) $(3 \sqrt{3},-2 \sqrt{2})$	1
7	The angle between two lines $\frac{x-2}{3}=\frac{y+1}{-2}, z=2$; and $\frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2}$ (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{2}$	1

8	The number given by the Rolle's theorem for the function $x^{3}-3 x^{2}, x \in[0,3]$ is [1]1 [2] $\sqrt{2}$ $[3] \frac{3}{2}$ [4]2	
9	If we measure the side of a cube to be 4 cm with an error of 0.1 cm , then the error in our calculation of the volume is [1]0.4 cu. cm [2] $0.45 \mathrm{cu} . \mathrm{cm}$ [3] $2 \mathrm{cu} . \mathrm{cm}$ [4]4.8 cu. cm	1
10	Find the value $\int_{0}^{\frac{2}{3}} \frac{d x}{\sqrt{4-9 x^{2}}}$ $\begin{equation*} [1] \frac{\pi}{6} \tag{2} \end{equation*}$ $[3] \frac{\pi}{4}$ [4] π	1
11	The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x, then $P(x)$ $[1] x$ [2] $\frac{x^{2}}{2}$ [3] $\frac{1}{x}$ $[4] \frac{1}{x^{2}}$	1
12	The probability mass function of a random variable is defined as The $E(X)$ is equal to $[1] \frac{1}{15}$ [2] $\frac{1}{10}$ $[3] \frac{1}{3}$ $[4] \frac{2}{3}$	1
13	Subtraction is not a binary operation in (1) R (2) Z (3) N (4) Q	1
14	The domain of the function defined by $f(x)=\sqrt{x-1}$ is (1) $[1,2]$ (2) $[-1,1]$ (3) $[0,1]$ (4) $[-1,0]$	1
15	Find the general equation of a circle with centre $(-3,-4)$ and radius 3units. (1) $x^{2}+y^{2}+6 x+8 y+6=0$ (2) $x^{2}+y^{2}+6 x+8 y+16=0$ (3) $x^{2}+y^{2}=0$ (4) $x^{2}+y^{2}+16=0$	1
16	If $2 \hat{\imath}-\hat{\jmath}+3 \hat{k}, 3 \hat{\imath}+2 \hat{\jmath}+\hat{k}, \hat{\imath}+m \hat{\jmath}+4 \hat{k}$ are coplanar, find the value of m [1]3 [2]-3 [3] $\frac{3}{2}$ [4]0	1
17	Evaluate: $\quad x \rightarrow 0\left(\frac{\operatorname{sinsin} m x}{x}\right)$. [1]0 [2]-m [3] m [4] ∞	1

PART II .

Answer any seven questions. question number 30 is Compulsory .
$7 \times 2=14$

21	If adj $A=\left[\begin{array}{lllllllll}-1 & 2 & 2 & 1 & 1 & 2 & 2 & 1\end{array}\right]$, find A^{-1}.	2
22	Show that $Z=(2+i \sqrt{3})^{10}+(2-i \sqrt{3})^{10}$ is real	2
23	Find the monic polynomial equation of minimum degree with real coefficients having $2-\sqrt{3} i$ as a root.	2
24	Identify the type of conic sections for the equations $y^{2}+4 x+3 y-4=0$	2
25	Find $d f$ for $f(x)=x^{2}+3 x$ and evaluate it for $x=2$ and $d x=0.1$	2
26	$y=A e^{12 x}+B e^{-12 x}$ Show that the differential equation is $\frac{d^{2} y}{d x^{2}}-144 y=0$ corresponding	2
27	Find the slope of the tangent to the curves at the respective given points. $y=x^{4}+2 x^{2}-x \text { at } x=1$	2
28	Evaluate: $\int_{0}^{3}\left(3 x^{2}-4 x+5\right) d x$	2
29	Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images.	2
30	Find the length of the perpendicular from the point (1,-2,3) to the plane $x-y+z=5$	2

PART III .

Answer any seven questions. question number 40 is Compulsory .

31	Show that the rank matrix:[$\begin{array}{llllllll}3-85 & 2 & -51 & 4-1 & 3\end{array}$	3
32	The complex numbers u, v, and w are related by $\frac{1}{u}=\frac{1}{v}+\frac{1}{w}$. If $v=3-4 i$ and $w=4+3 i$, find u in rectangular form.	3
33	Find the value of $\left(\cos \cos \left(\frac{4 \pi}{3}\right)\right)+\left(\cos \cos \left(\frac{5 \pi}{4}\right)\right)$	3
34	If p and q are the roots of the equation $l x^{2}+n x+n=0$, show that $\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{l}}=0$.	3
35	$U(x, y, z)=x y z, x=e^{-t}, y=e^{t} \cos \cos t, z=\sin \sin t, t \in R . ;$ then find $\frac{d U}{d t}$	3
36	Find the volume of a right-circular cone of base radius r and height h.	3
37	Construct the truth table ($p \vee q$) $\vee \neg q$.	3
38	If the equation $3 x^{2}+(3-p) x y+q y^{2}-2 p x=8 p q$ represents a circle, find p and q. Also determine the centre and radius of the circle.	3
39	If $\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \vec{b}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{c}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{a} \times(\vec{b} \times \vec{c})=l \vec{a}+m \vec{b}+n \vec{c}$, find the values of l, m, n.	3
40	Solve $\left(1+x^{2}\right) \frac{d y}{d x}=1+y^{2}$.	3

Answer all the questions .

41	(a)
	i

alt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose height and diameter of base are always equal. How fast is the height of the pile increasing when the pile is 10 metre high?

42	a)If $z=x+i y$ and $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}$, show that $x^{2}+y^{2}=1$. (OR) b) Solve the equation $6 x^{4}-5 x^{3}-38 x^{2}-5 x+6$ $=0$ if it is known that $\frac{1}{3}$ is a solution.	
43	(a) A closed (cuboid) box with a square base is to have a volume of 2000 c.c. The material for the top and bottom of the box is to cost Rs. 3 per square cm and the material for the sides is to cost Rs. 1.50 per square cm . If the cost of the materials is to be the least, find the dimensions of the box. (OR) b) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours?	5
44	a) Prove by vector method that $\sin \sin (\alpha-\beta)=\sin \sin \alpha \cos \cos \beta-\cos \cos \alpha$ $\sin \sin \beta$. (OR) b) A rectangular page is to contain $24 \mathrm{~cm}^{2}$ of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm . What should be the dimensions of the page so that the area of the paper used is minimum?	5
45	a) Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.. (OR) b) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation $+_{5}$ on Z_{5} using table corresponding to addition modulo 5 .	5
46	a). Father of a family wishes to divide his square field bounded by $x=0, x=4, y=4$ and $y=0$ along the curve $y^{2}=4 x$ and $x^{2}=4 y$ into three equal parts for his wife, daughter and son. Is it possible to divide? If so, find the area to be divided among them. (OR) b). A six sided die is marked ' 1 ' on one face, ' 3 ' on two of its faces, and ' 5 ' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find (i) the probability mass function (ii)the cumulative distribution function (iii) $\quad P(4 \leq$ $X \leq 10$) (iv) $P(X \geq 6)$	
47	a) if $u=\sec ^{-1}\left[\frac{x^{3}-y^{3}}{x+y}\right]$ then prove that; $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 \cot \cot u$. (OR) b) Solve the following differential equations: $\left(x^{3}+y^{3}\right) d y-x^{2} y d x=0$.	5

