MODEL QUESTION PAPER
 BIOLOGY
 XII - STANDARD (CBSE)

Time: 3 hours
Maximum Marks: 70

General Instructions:

(i) All questions are compulsory.
(ii) The question paper has five sections and 33 questions. All questions are compulsory.
(iii) Section-A has 16 questions of 1 mark each; Section-B has 5 questions of 2 marks each; Section- C has 7 questions of 3 marks each; Section- D has 2 case- based questions of 4 marks each; and Section-E has 3 questions of 5 marks each.
(iv) There is no overall choice. However, internal choices have been provided in Some questions. student has to attempt only one of the alternatives insuch questions. Wherever necessary, neat and properly labeled diagrams should be drawn.

SECTION -A

S.NO.	Question					Marks
1.	Remnants of nucellus are persistent during seed development in: a) pea b) groundnut c) wheat d) black pepper					1
2.	The wall layer of microsporangium which nourishes the pollen grain is: a) epidermis b) endothecium c) middle layers d) tapetum					1
3.	A short piece of DNA, having 20 base pairs, was analyzed to find the number of nucleotide bases in each of the polynucleotide strands. Some of the results areshown in the table. How many nucleotides containing Adenine were present in strand 2? a) 2 b) 4 c) 5 d) 7					1
4.	In a certain species of insects, some have 13 chromosomes, and the others have 14chromosomes. The 13 and 14 chromosome bearing organisms are a) males and females, respectively b) females and males, respectively c) all male d) all females					1

5.	At a particular locus, the frequency of allele A is 0.8 and that of allele a is 0.2 . What would be the frequency of heterozygotes in a random mating population at equilibrium? a) 0.32 b) 0.16 c) 0.24 d) 0.48	1
6.	Variations caused due to mutations are a) random and directionless b) random and directional c) random and small d) random, small and directional	1
7.	What is the smallest part of a DNA molecule that can be changed by a point mutation? a) Oligonucleotide b) Codon c) Gene d) Nucleotide	1
8.	What should be the genotype of the indicated member? a) AA b) Aa c) XY d) aa	1
	A patient was advised to have a kidney transplant. To suppress the immunereaction, the doctor would administer him: a) statins produced from Monascus purpureus b) statins produced from Streptococcus thermophilus c) cyclosporin A produced from Trichoderma polysporum d) cyclosporin A produced from Clostridium butylicum	1

Question No. 13 to 16 consist of two statements - Assertion (A) and Reason (R). Answer these questions selecting the appropriate option given below:
a) Both A and R are true and R is the correct explanation of A.
b) Both A and R are true and R is not the correct explanation of A .
c) A is true but R is false.
d) A is False but R is true.

13.	Assertion: Primary endosperm nucleus is diploid. Reason: It is the product of double fertilization.	1
14.	Assertion:Ribosomal RNA is synthesized in the nucleus of the cell. Reason: It is translated with the enzyme RNA polymerase III.	1
15.	Assertion: Smoking can raise blood pressure and increase heart rate. Reason: Nicotine stimulates adrenal glands to release adrenaline and nor- adrenaline into the blood circulation, both of which raise blood pressure and increase heart rate.	1
16.	Assertion: PCR is a powerful technique to identify genetic disorders. Reason: PCR can detect mutations in low amounts of DNA.	1
Section - B		
17.	Explain the process of hormonal regulation of spermatogenesis.	2
18.	The diagram below shows the sequence of amino acids in part of a haemoglobin molecule. a) If the base T^{*} was substituted with A , how would it affect the haemoglobin chain? b) Name the condition and the effects associated with the above substitution.	2

19.The graph given below indicates the administration of the first (L) and second dose (M) of a vaccine. The corresponding response of the body is indicated by X and Y . Interpret the graph and explain the reason for such a response shown by the body.
20.The image below shows the result of plating bacteria in chromogenic medium after incorporating the gene of interest in plasmid. Some plates had blue colonies; someplates had white colonies. A single bacterium extracted from Plate IIIIII is shown below:

Q. No. 29 and 30 are case-based questions. Each question has 3 subparts with internal choice in one subpart.

29.	The structure below shows pUC18 which is similar to pBR322 in its function. However, they differ in some of their restriction sites and number of ori. The ori number for pBR322 is approximately 20. a) How are puc 18 and pBR322 used in biotechnological studies? OR What will be the impact if ori in the above structure gets damaged? b) The lac z gene has many recognition sites. Study the segment of DNA given below and answer the questions 5'... ATC GTA AAG CTT CAT...3' $3^{\prime} . .$. TAG CAT TTC GAA GTA... 5^{\prime} a) Applying your knowledge of palindrome sequences identify and mark the possible region where the restriction enzyme X will act. b) Restriction enzyme Y was used to extract gene of interest from a plant.This gene needs to be inserted in the given DNA segment which has been treated with restriction enzyme X. Will there be a successfulrecombination? Explain with a reason. c) Which one of the two (pUC18 and pBR322) would you prefer for biotechnological studies? Justify.	4
30.	Observe the graph given below. The graph represents inter-specific interaction between two species of Paramecia competing for the same resource in a culture medium. Paramecium caudatum and Paramecium aurelia were grown in separate cultures as well as in mixed cultures. Itwas found that each species grew in numbers according to the logistic equation.	4

	a) Which species is competitively superior? Support it with the data provided inthe graph. b) State the underlying principle for the above result and name the scientist associated with this principle. c) Explain the mechanism in which two or more species competing with eachother can co - exist. OR Graphs A and B shown below depict interaction of two species. Which graphindicates Mutualism? Give reason. A B			
		SECTIO		
31.	Placed below are not ready the cases, wh a medicalexp Couple Couple 1 Couple 2 Couple 3 Couple 4	re case studies of some couples who for adoption or taking gametes fr ich Assisted Reproductive Tech rt? Explain briefly with justificat	were not able to havekids. These couples donors. After thoroughly examining ogy will you suggest to these couples as of each case.	

	Couple 5	Sterilization in male	Morphologically sperms	abnormal	
	OR Given below are certain situations. Analyse the situation and suggest thename of suitable contraceptive device along with mode of action.				
	Situation	Requirement of contraceptive for	Name of the contraceptive device	Mode of action	
	1	Blocking the entry of sperms through cervix			
	2	Spacing between children			
	3	Effective emergency contraceptive			
	4	Terminal method to prevent any more pregnancy in female			
	5	Sterilization in male			
	Given below is a stretch of DNA showing the coding strand of a structural gene of a transcription unit? 5’--ATG ACC GTA TTT TCT GTA GTG CCC GTA CTT CAG GCA TAA-3' a) Write the corresponding template strand and the mRNA strand that will be transcribed, along with its polarity. b) If GUA of the transcribed mRNA is an intron, depict the sequence involved in the formation of mRNA /the mature processed hnRNA strand. i) In a bacterium ii) In humans c) Upon translation, how many amino acids will the resulting polypeptide have? Justify. OR In shorthorn cattle, the coat colours red or white are controlled by a single pair of alleles. A calf which receives the allele for red coat from itsmother and the allele for white coat from its father is called a 'roan'. It hasan equal number of red and white hairs in its coat. a) Is this an example of codominance or of incomplete dominance? b) Give a reason for your answer. c) With the help of genetic cross explain what will be the consequentphenotype of the calf when i) red is dominant over white ii) red is incompletely dominant.				
	Explain the role of Primary and Secondary Lymphoid organs with the helpof suitable examples. OR With the help of a flow chart illustrate how an infected animal cell cansurvive while viruses are being replicated or released.				

