MODEL QUESTION PAPER BIOLOGY XII – STANDARD (CBSE)

Time: 3 hours Maximum Marks: 70

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper has five sections and 33 questions. All questions are compulsory.
- (iii) Section—A has 16 questions of 1 mark each; Section—B has 5 questions of 2 marks each; Section—C has 7 questions of 3 marks each; Section—D has 2 case- based questions of 4 marks each; and Section—E has 3 questions of 5 marks each.
- (iv) There is no overall choice. However, internal choices have been provided in Some questions. student has to attempt only one of the alternatives insuch questions. Wherever necessary, neat and properly labeled diagrams should be drawn.

SECTION -A

S.NO.	Question				11/			Marks
1.	Remnants of nucellus are persistent during seed development in:							1
	a) pea							
	b) groundnut							
	c) wheat							
		ack pepper						
2.		•	rosporangium	which nouris	hes the polle	en grain is:		1
	′ 1	oidermis						
		dothecium						
		iddle layers						
-		petum						
3.	_		_	-	•	d the number o		1
		bases in eac	th of the polynu	acleotide stran	ds. Some of t	he results aresh	nown in	
	the table.							
			_	ucleotide bases		_		
			Adenine	Cytosine	Guanine	Thymine		
		Strand 1	4	4				
		Strand 2 5						
	How many nucleotides containing Adenine were present in strand 2?							
	a) 2							
	b) 4	ļ.						
	c) 5	5						
	d) 7	1						
4.	In a certain	n species of i	nsects, some h	ave 13 chromo	somes, and th	ne others have		1
	14chromo	somes.The 1	3 and 14 chron	nosome bearin	g organisms a	are		
	a) n	nales and fem	ales, respectivel	y				
			ales, respectivel	у				
	/	ll male						
	d) a	ll females						

5.	At a particular locus, the frequency of allele A is 0.8 and that of allele a is 0.2. What would be the frequency of heterozygotes in a random mating population at equilibrium? a) 0.32 b) 0.16 c) 0.24 d) 0.48	1
6.	Variations caused due to mutations are a) random and directionless b) random and directional c) random and small d) random, small and directional	1
7.	What is the smallest part of a DNA molecule that can be changed by a point mutation? a) Oligonucleotide b) Codon c) Gene d) Nucleotide	1
8.	a) AA b) Aa c) XY d) aa	1
9.	A patient was advised to have a kidney transplant. To suppress the immunereaction, the doctor would administer him: a) statins produced from <i>Monascus purpureus</i> b) statins produced from <i>Streptococcus thermophilus</i> c) cyclosporin A produced from <i>Trichoderma polysporum</i> d) cyclosporin A produced from <i>Clostridium butylicum</i>	1

		Endonuc	lease	Exonucl	ease	1	
	a)	3' <u>5'</u> 5' <u>3'</u>	3' 5' 5' 5' 5' 5' 5' 5' 5' 5' 5' 5' 5' 5'	3'5'	3' 77775' 3'77775' 5'		
	b)	3' <u>5'</u>	3' 3'5' 5'3'	3' <u>5'</u> 5' <u>3'</u> 3'	3' 5' 3' 5' 5' 5' 5' 3' 5'		
	с)	5'3' 3' 5'	5',3' 5',3	5'3 <u>'</u> 3' 5'	5', 3' 5', 3', 3' 3' 5'		
	d)	5; <u>3'</u> 3' 5'	5' 3' 5'3' 5'3 3' 5'5'	3' 5'	5''''3' 3' 5'		
		•			X .>	-t.	
	b) reduce c) elimina	nge eco-friendly pe pesticide accumulate te pests from the f	ation in food ch ïeld without the	use of manual			
		maximum nutri ned by pest	tional content	in the crop	that would b	e otherwise	
12.	Consur Observe the co	ntents 1,2,3 and 4 d soil moisture o	of soil sample	s A, B and C sl	hown in the grap	oh. If the	1
12.	Observe the co temperature an	ntents 1,2,3 and 4 d soil moisture o	of soil sample	s A, B and C sl	hown in the grap	oh. If the	1
12.	Observe the co temperature an	ntents 1,2,3 and 4 d soil moisture of ecomposition?	of soil sample f all soil sample	s A, B and C sl es are identica	hown in the grap	oh. If the	1
12.	Observe the co temperature an	ntents 1,2,3 and 4 d soil moisture of composition?	of soil sample f all soil sample	s A, B and C shes are identical	hown in the grap l, which soil sar	oh. If the	1
12.	Observe the co temperature an show faster de	ntents 1,2,3 and 4 d soil moisture of composition?	of soil sample f all soil sample 2 3 4 1 2 3 Soil A Soil B n content, 2 indicates ch	s A, B and C shes are identical	hown in the grap l, which soil sar	oh. If the	1
12.	Observe the co temperature an show faster de a) Soil Sa b) Soil Sa	ntents 1,2,3 and 4 d soil moisture of ecomposition?	of soil sample f all soil sample 2 3 4 1 2 3 Soil A Soil B n content, 2 indicates ch	s A, B and C shes are identical	hown in the grap l, which soil sar	oh. If the	1

Ouestion	1 No. 13 to	16 co	nsist of t	wo stat	ements	– Assert	tion (A)	and R	eason (R). Answer t	hese
_	s selecting							una n	(11). 1 1115 11 01 1	
_	Both A and	_		-	_		ion of A			
	Both A and					-				
c) A	is true but	t R is fa	alse.			_				
d) A	A is False b	out R is	s true.							
13.	Assertion: I Reason: It is	•	-							1
		F								
14.	Assertion:R	ibosom	al RNA is	s synthes	sized in th	ne nucleu	is of the c	ell.		1
	Reason: It i	s transla	ated with	the enzy	me RNA	polymer	ase III.		C	
15.	Assertion: S	Smoking	g can raise	e blood p	ressure a	nd increa	ise heart i	rate.		1
	Reason: Ni	cotine	stimulate	s adrena	l glands	to releas	e adrenal	ine and	d nor- adrenaline into	
	the blood c	irculati	on, both	of which	raise bl	ood pres	sure and	increa	se heart rate.	
16.	Assertion: I	PCR is a	powerfu	l techniq	ue to ide	ntify gene	etic disor	ders.		1
	Reason: PC									
	l				Sect	ion - B				
17.	Explain the	process	of hormo	onal regu	lation of	spermato	genesis.			2
18.	The diagran	n below	shows th	e sequen	ice of am	ino acids	in part of	a haer	noglobin molecule.	2
		VI	TIT'S	,	m	D	CI	CI	80 V V	
		Val	His	Leu	Thr	Pro	Glu	Glu	haemoglobin	
									chain	
	.15	Ш	111		т		111	ш	mRNA	
		*					*		1100	
7		CAT	GTA	AAT	TGA	GGA	CTT	CTC	DNA	
		Key:	Val =	valine		Thr= threo	nine		A STATE OF THE STA	
		ncy.		histidine		Pro= proli				
				leucine		Glu = gluta				
		ise T*	was subs	tituted v	with A, I	now wou	ıld it affe	ect the	haemoglobin	
	chain?	i	1141.	1.41	24		-341 41	- 1-	1	
	p) Name ti	ne conc	iition and	ı tne eff	ects asso	ociated v	with the	above	substitution.	

19. The graph given below indicates the administration of the first (L) and second dose (M) of a vaccine. The corresponding response of the body is indicated by X and Y. Interpret the graph and explain the reason for such a response shown by the body. Y Concentration of antibody Time 20. The image below shows the result of plating bacteria in chromogenic medium after 2 incorporating the gene of interest in plasmid. Some plates had blue colonies; someplates had white colonies. A single bacterium extracted from Plate I,II,III is shown below: bacteria plasmid gene of interest bacteria from bacteria from bacteria from plate I plate II plate III On the basis of your observations Identify the plate(s) which is/are white. Give a reason. Identify the plate(s) which is/are blue. Give a reason. Biomass of a standing crop of phytoplankton is 4 kg/m² which supports a large standing 21. 2 crop of zooplankton having a biomass 11 kg/m². This is consumed by small fishes having biomass 25 kg/m² which are then consumed by large fishes withthe biomass 37 kg/m². Draw an ecological pyramid indicating the biomass at each stage and also name thetrophic levels. Mention whether it is an upright or inverted pyramid. Use the information provided in the table given below to answer the following questions:

	Tropic level	Net production (KJm ⁻² y ⁻¹)	Respiration (KJm ⁻² y ⁻¹)	
	Top carnivore	50	35	
	Carnivores	420	378	
	Herbivores	4,490	4,041	
	Producers	45,000	40,367	
	a) Calculate the gross prin	*		
	,	the Net Production from F	Producers to Top Carnivore.	
	Give a reason for you			
	,	SECTION C		
22.		sperms will gain entry into the changes induced by it on P and		3
	Figure	Ovum surrounded by few	y sperms	
23.	Explain the phases in embryonic pregnancy in a human female.	e development from the morula	stage till theestablishment of	3
24.	A pregnant human female was a was carrying had developed from chromosome. a) What is this condition of b) Why was she advised	m a zygote having 45 chromosocalled and how does it arise?	S	3
25.	The graphs below show three ty show the individuals in the pop the statistical means.			3

4

a) How are puc18 and pBR322 used in biotechnological studies?

OR

What will be the impact if *ori* in the above structure gets damaged?

b) The lac z gene has many recognition sites. Study the segment of DNA given below and answer the questions

5'... ATC GTA AAG CTT CAT...3'

3'... TAG CAT TTC GAA GTA...5'

- a) Applying your knowledge of palindrome sequences identify and mark the possible region where the restriction enzyme X will act.
- b) Restriction enzyme Y was used to extract gene of interest from a plant. This gene needs to be inserted in the given DNA segment which has been treated with restriction enzyme X. Will there be a successful recombination? Explain with a reason.
- c) Which one of the two (pUC18 and pBR322) would you prefer for biotechnological studies? Justify.

30. Observe the graph given below.

The graph represents inter-specific interaction between two species of Paramecia competing for the same resource in a culture medium. *Paramecium caudatum* and *Paramecium aurelia* were grown in separate cultures as well as in mixed cultures. Itwas found that each species grew in numbers according to the logistic equation.

- a) Which species is competitively superior? Support it with the data provided in the graph.
- b) State the underlying principle for the above result and name the scientist associated with this principle.
- c) Explain the mechanism in which two or more species competing with eachother can co exist.

OR

Graphs A and B shown below depict interaction of two species. Which graphindicates Mutualism? Give reason.

SECTION - E

31. Placed below are case studies of some couples who were not able to havekids. These couples are not ready for adoption or taking gametes fromdonors. After thoroughly examining the cases, which Assisted Reproductive Technology will you suggest to these couples as a medical expert? Explain briefly with justification of each case.

Couple	Test reports of female partner	Test reports of male partner
Couple 1	Normal reports	Normal sperms in testes, missing connection in epididymis and vas deferens
Couple 2	Blockage in the fallopian tube	Normal reports
Couple 3	Normal reports	Poor semen parameters in terms of count, motility and morphology
Couple 4	Low ovarian reserve	Normal reports

5

	Couple 5	Sterilization in male	Morphologically sperms	abnormal		
		OR	1			
	Given below	are certain situations. Analyse the situat	ion and suggest the	ename of suitable		
		e device along with mode of action.				
	Situation	Requirement of contraceptive for	Name of the contraceptive device	Mode of action		
	1	Blocking the entry of sperms through cervix	00,100			
	2	Spacing between children				
	3	Effective emergency contraceptive				
	4	Terminal method to prevent any				
		more pregnancy in female				
	5	Sterilization in male				
32.		w is a stretch of DNA showing the c	oding strand of a	structural gene of a	5	
	transcriptio					
		ACC GTA TTT TCT GTA GTG (CCC GTA CTT	CAG GCA		
	TAA—3'	(- 11 1' 1 1 1 1 1 1 1 1 1 1 1- 1	d and dia an DNI	A -4		
		te the corresponding template stran- scribed, along with its polarity.	u and the mkna	A strand that will be		
			ron denict the sea	uence involved in the		
	b) If GUA of the transcribed mRNA is an intron, depict the sequence involved in the formation of mRNA /the mature processed hnRNA strand.					
	i) In a bacterium					
	ii) In humans					
	c) Upon translation, how many amino acids will the resulting polypeptide have? Justify. OR					
	In shorthorn	cattle, the coat colours red or white a	re controlled by a	single pair of alleles.		
	A calf which	receives the allele for red coat from its	nother and the allel	e for white coat from		
		alled a 'roan'. It hasan equal number of a				
		is an example of codominance or of inco	omplete dominance	2?		
		a reason for your answer.	91.1 .1	. 1		
		the help of genetic cross explain what	will be the consequ	uentphenotype of the		
		when s dominant over white				
		s incompletely dominant.				
33.		role of Primary and Secondary Lympho	id organs with the	helpof suitable	5	
55.	examples.	ozo or rimmar and becomeary Lympho.	a organis with the	noipoi suituoio	3	
	, in the second	OR				
	With the hel	p of a flow chart illustrate how an infe	cted animal cell ca	ansurvive while		
		eing replicated or released.				