MODEL QUESTION PAPER MATHEMATICS

XII – STANDARD (CBSE)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- This Question Paper contains five sections A, B, C, D and E. Each section is compulsory. However,
- there are internal choices in some questions.
- Section A has 18 MCQs and 02 Assertion-Reason based questions of 1 mark each.
- Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub-parts.

SECTION A

Multiple choice questions each question carries 1 mark

Q1	How many onto functions from set A to set A can be formed for the set $A = \{1, 2, 3, 4, 5, \dots, n\}$?	1
	(a) n^2 (b) n (c) n! (d) 2n	
02	$\mathbf{L} \neq \mathbf{D}$ is a subtract \mathbf{N} (set of set of set of set of set \mathbf{L}) and that (set \mathbf{n}) \mathbf{D} (set \mathbf{n}) and (set \mathbf{n})	1
Q^2	Let R be a relation on N (set of natural numbers) such that $(m, n) R (p, q) mq(n + p) = np(m + q)$.	1
	Then, R is	
	(a) An Equivalance Bolation (b) Only Boflaving (a) Symmetric and reflaving (d) Only Transitiva	
	(a) An Equivalence Relation (b) Only Renexive (c) Symmetric and renexive (d) Only Transitive	
	The function $f: N \rightarrow N$ defined by $f(x) = 7x$ is	1
Q3	(a) one one and onto (b) not one one but onto (c) one one and into (d) bijective function	
	(a). One-one and onto (b). Not one-one out onto (c). One-one and into (d). Dijective function	
Q4	The principal value of $\cos -1$ ($\cos 5$) is	1
	(a) 5 (b) $\pi = 5$ (c) $5 = \pi$ (d) $2\pi = 5$	
	(a) 5^{-1} (b) $n = 5^{-1}$ (c) $5 = n^{-1}$ (d) $2n = 5^{-1}$	
Q5	If $ab + bc + ca = 0$, then find $1/a^2 - bc + 1/b^2 - ca + 1/c^2 - ab$	1
	(a) π (b) 0 (c) -1 (d) 2	
-	$(a) \pi$ $(b) 0$ $(c) -1$ $(d) 2$	
Q6	Rank of a non-zero matrix is always	1
	(a) ≥ 1 (b) 0 (c) greater than 1 (d) equal to 1	
Q7	If $A = \text{diag} [5, 27] : B = \text{diag} [7, 85]$ then $3A = 2B$ is	1
	$\prod M = \dim \{ [0, 2, i] \}, D = \dim \{ [0, 0, j] \}, \dim [0, M = 2D] $ is	
	(a). diag $\begin{bmatrix} 1 - 22 - 11 \end{bmatrix}$ (b). diag $\begin{bmatrix} -1 - 22 & 11 \end{bmatrix}$ (c). diag $\begin{bmatrix} -1 & 22 & -11 \end{bmatrix}$ (d). diag $\begin{bmatrix} 1 & -22 & 11 \end{bmatrix}$	
1		

Q8	Inverse of a square matrix, if it exists, is	1				
	(a) unique (b) defined (c) singular (d) non-singular					
Q9	Which of the following is a correct statement?	1				
	a) Determinant is a square matrix.					
	b) Determinant is a number associated to a matrix.					
	c) Determinant is a number associated with the order of the matrix.					
	d) Determinant is a number associated to a square					
Q10	If A is a square matrix of order 4 such that $ adj A = 125$, then $ A $ is	1				
	(a) 25 (b) 5 (c) 15 (d) 625					
Q11	If for matrix A, $ A = 3$, where matrix A is of order 2 × 2, then 5 A is	1				
	(a) 9 (b) 75 (c) 15 (d) 25					
Q12	If volume of a cylindrical container of radius R and height H is V, then the second derivative of V	1				
	with respect to R is H.					
	a) $2/\pi$ b) -2π c) 2π d) $-\pi$					
Q13	A polynomial function is differentiable at	1				
	a) $[-\infty, \infty]$ b) $(-\infty, 0)$ c) $(0, \infty)$ d) $(-\infty, \infty)$					
Q14	The equation of the tangent to the curve $y = 2x^3 - x^2 + 3$ at (1, 4) is	1				
	(a). $4y - 4x = 0$ (b). $y - 4x = 0$ (c). $4y - x = 0$ (d). $y - x = 0$					
015	The nature of the function $f(x) = (1/2) x$ on P is	1				
Q15	a) increasing b) decreasing c) patter increasing nor decreasing d) constant	1				
	a) increasing b) decreasing c) neutrer increasing nor decreasing d) constant					
Q16	The degree of the differential equation $4y' - y/y' = \sin x$ is	1				
	a) 1 b) 2 c) 3 d) 4					
Q17	A solution of differential equation which contains arbitrary constants is called the of the	1				
	differential equation					
	a) solution b) optimal solution c) general solution d) particular solution					
Q18	Maximise the function $Z = 11x + 7y$, subject to the constraints: $x \le 3$, $y \le 2$, $x \ge 0$, $y \ge 0$.	1				
	(a) 49 (b) 50 (c) 47 (d) 48					

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason(R). Choose the correct answer out of the following choices.

(a) Both (A) and (R) are true and (R) is the correct explanation of (A).

(b) Both (A) and (R) are true but (R) is not the correct explanation of (A). (c) (A) is true but (R)

is false. (d) (A) is false but (R) is true.

Q19	Assertion (A) All trigonometric function have their inverses over their respective domains	
	Reason(R) The inverses of $\tan^{-1}x$ exists for some $x \in R$	
	(A)Both A and R are true and R is the correct explanation of A	
	(B) Both A and R are true but R is NOT the correct explanation of A.	
	(C) A is true but R is false	1
	(D) A is false but R is true	
	(E)Both A and R are false	
020		
Q20	Assertion (A) : The principal value of $\cos^{-1}\left(\cos\frac{5\pi}{3}\right) = \frac{\pi}{3}$	
	Reason (R) : The range of $\cos^{-1} x$ is $[0, \pi]$	1
	(A). Both A and R are true and R is the correct explanation of A	
	(B). Both A and R are true but R is NOT the correct explanation of A	
	(C). A is true but R is false.	
	(D). A is false but R is true.	
	(E). Both A and R are false.	
	SECTION – B	

[This section comprises of very short answer type questions (VSA) of 2 marks each]

Q21	Show that the relation R defined in the set A of all polygons as $R = \{(P1, P2): P1 \text{ and } P2 \text{ have same} \}$	2
	number of sides}, is an equivalence relation. What is the set of all elements in A related to the right	
	angle triangle T with sides 3, 4 and 5?	
Q22	If a Matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?	2
Q23	Solve the differential equation $(1 + y^2) \tan^{-1}x dx + 2y (1 + x^2) dy = 0$	2
Q24	Find the contaction of the contact $\hat{i} + 2\hat{i} + 7\hat{h}$ on the contact $7\hat{i} + \hat{i} + 2\hat{h}$	2
	Find the projection of the vector $i+3j+7k$ on the vector $7i-j+8k$.	
Q25	Prove that if E and F are independent event then the event E and F' are also independent.	2

<u>SECTION – C</u>

[This section comprises of short answer type questions (SA) of 3 marks each]

Q26	If $f: R \to R$ and $g: R \to R$ are given by $f(x) = \cos x$ and $g(x) = 7x^2$, then find $gof(x)$.	3

Q27	If P (A)=0.8, P (B)=0.5 and P(B/A)=0.4, Find (i) P(A \cap B) (ii) P(A/B) (iii)P(A \cup B) OR	3
	If $P(A) = 611, P(B) = 511$ and $P(A \cup B) = 711$, Find (i) $P(A \cap B)$ (ii) $P(A B)$ (iii) $P(B A)$	
Q28	x a x+a	3
	Using the property of determinants and without expanding prove that $\begin{vmatrix} y & b & y+b \end{vmatrix} = 0$	
	z c z+c	
Q29	Find the area of the region bounded by $y^2 = 9x$, $x=2,x=4$ and the x-axis in the first quadrant.	3
Q30	Show that the line through the point $(4,7,8)$, $(2,3,4)$ is parallel to the through point $(-1,-2,1)$, $(1,2,5)$.	3
Q31	The radius of the circle is increasing at the rate of 0.7cm/s. what is the rate increase of its	3
	circumierence.	

SECTION –D

[This section comprises of long answer type questions (LA) of 5 marks each]

Q32	A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimeters of the gas per second. Find the rate at which the radius of the balloon increase when the radius is 15cm.	5		
Q33	Find the shortest distance between the line $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$	5		
Q34	Find the Area bounded by the curve $(x - 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$.	5		
Q35	Determine P(E/F) in question 6 to 9: A coin is tossed three times, where	5		
	(i) E: head on third toss F: heads on first two tosses.			
	(ii) E: at least two heads F: at most two heads			
	(iii) E: at most two tails F: at least one tail			
	OR			
	A Mack and a red die are rolled.			
	(a) Find the conditional probability of obtaining a sum greater than 9, given that the black die			
	resulted in a 5.			
	(b) Find the conditional probability of obtaining the sum 8, given that the red die resulted in a			
	number less than 4.			

SECTION –E

[This section comprises of 3 case- study/passage based questions of 4 marks each with sub Parts.

The first two case study questions have three sub parts (i), (ii), (iii) of marks 1,1,2 respectively.

The third case study question has two sub parts of 2 marks each.)

Q30	Students of Grade 9, planned to	plant saplings alo	ng straight lines, paral	lel to each other to one	4			
	side of the playground ensuring that they had enough play area. Let us assume that they planted							
	one of the rows of the saplings along the line $y = x - 4$. Let L be the set of all lines which are							
	parallel on the ground and R be a relation on L.							
	1. Let relation R be defined by $R = \{(L_1, L_2): L_1 L_2 \text{ where } L_1, L_2 \in L\}$ then R is relation							
	a. Equivalence b. Only reflexive	c. Not reflexive d	l. Symmetric but not t	ransitive				
	2. Let $\mathbf{R} = \{ (L_1, L_2) : L_1 \perp L_2 \text{ where } L_1, L_2 \in \mathbf{L} \}$ which of the following is true?							
	a. R is Symmetric but neither reflexive nor transitive b. R is Reflexive and transitive but not symmetric							
	b. R is Reflexive and transitive but not symmetric							
	c. R is Reflexive but neither symmetric nor							
	$d \mathbf{R}$ is an Equivalence relation		a gara					
	a. R is an Equivalence relation							
	3. The function f: $R \rightarrow R$ defined	by $f(x) = x - 4$		1 settle 2 the Ta				
	is							
a. Bijective b. Surjective but not injective c. Injective but not Surjective								
	d. Neither Surjective nor Injecti	ve						
	4. Let $f: R \to \overline{R}$ be defined by f	(x) = x - 4. Then	the range of $f(x)$ is					
	a. R b. Z c. W	d. Q						
	5. Let $R = \{(L_1, L_2) : L_1 \text{ is para}\}$	llel to L_2 and L_1 :	y = x - 4 then which	n of the following can be				
	taken as L ₂ ?							
	a. 2x-2y+5=0 b. 2x+y=5	c. 2x + 2y	+7=0 d. x+y=2	7				
Q37	A manufacture produces three st	ationery products	Pencil, Eraser and Sh	arpener which he sells in	4			
	two markets. Annual sales are in	dicated below	1)					
	Market	Products (in num	nbers)	<u> </u>				
		Pencil	Hracar					
				Sharpener				
	A	10,000	2000	Sharpener 18,000 2,000				
	A B	10,000 6000	2000 20,000	Sharpener 18,000 8,000				
	A B	10,000 6000	2000 20,000	Sharpener 18,000 8,000				
	A B If the unit Sale price of Pencil, E	10,000 6000 craser and Sharper	2000 20,000 her are Rs. 2.50, Rs. 1	Sharpener 18,000 8,000 .50 and Rs. 1.00 Ps. 1.00 and Ps. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then	10,000 6000 raser and Sharper above three com	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00,	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 craser and Sharper above three com	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00,	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 raser and Sharper above three com	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00,	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 craser and Sharper above three commons	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00,	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then, NEW DELHI STATIONERY MAR STATIONERS - PRINTERS	10,000 6000 Traser and Sharper above three com	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00,	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 raser and Sharper above three com	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00, he Little Statione Greeting Cards. At	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 craser and Sharper above three commons	Litasei 2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00, he Little Greeting Cards. At	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 Traser and Sharper above three com	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00, he Little Greeting Cards, Att	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				
	A B If the unit Sale price of Pencil, E respectively, and unit cost of the respectively, then,	10,000 6000 Graser and Sharper above three commons	2000 20,000 her are Rs. 2.50, Rs. 1 modities are Rs. 2.00, he Little Greeting Cards. At Greeting Cards. At	Sharpener 18,000 8,000 .50 and Rs. 1.00 Rs. 1.00 and Rs. 0.50				

	Based on the above info	rmation answer the follo	wing:				
	1. Total revenue of market A a. Rs. 64,000 b. Rs. 60,400 c. Rs. 46,000 d. Rs. 40600						
	a. Rs. 64,000 b. Rs. 60,400 c. Rs. 46,000 d. Rs. 40600 2. Total revenue of market B a. Rs. 35,000 b. Rs. 53,000 c. Rs. 50,300 d. Rs. 30,500						
	2. Total revenue of mark	ket B					
	a. Rs. 35,000 b. Rs. 5	53,000 c. Rs. 50,300 d. R	s. 30,500				
	3. Cost incurred in mark	et A					
	a. Rs. 13,000 b. Rs.30,100 c. Rs. 10,300 d. Rs. 31,000						
	4. Profit in market A and B respectively are						
	a.(Rs.15,000, Rs.17,000) b.(Rs.17,000, Rs.15,000) c.(Rs.51,000,Rs.71,000)						
	d.(Rs.10,000,Rs. 20,	000)					
	5. Gross profit in both m	narket					
	a. Rs.23,000 b. Rs. 20),300 c. Rs. 32,000 d. Rs.	. 30,200				
Q38	Q38 Three schools DPS, CVC and KVS decided to organize a fair for collecting money for helping 4						
	the flood victims. They s	sold handmade fans, mat	s and plates from recycle	d material at a cost of			
	Rs. 25, Rs.100 and Rs. 5	50 each respectively.					
	Ks. 25, Ks. 100 and Ks. 50 cach respectively.						
	~~~		IN A	2.50			
	A State			- Estate			
	alar						
	and h						
	SCHOOL SCHOOL						
				The second second second			
	School /Article	DPS	CVC	KVS			
	Handmade fans	40	25	35			
	Mats	50	40	50			
	Plates	20	30	40			
	The numbers of articles	sold are given as					
	Based on the informatio	n given above, answer th	e following questions:				
	1. What is the total mor	ey (in Rupees) collected	by the school DPS?				
	a. 700 b. 7,000 c. 6;1	25 d. 7875					
	2. What is the total amo	ount of money (in Rs.) co	ollected by schools CVC a	and KVS?			
	a. 14,000 b. 15,725 c	. 21,000 d. 13,125					
	3. What is the total amo	unt of money collected b	y all three schools DPS, (	CVC and KVS?			
•	a. Rs. 15,775 b. Rs.	. 14,000 c. Rs. 21,000 d.	Rs. 17,125				
	4. If the number of hand	made fans and plates are	interchanged for all the s	schools, then what is			
	the total money collected	d by all schools?	1.050				
	a. Rs. 18,000 b. Rs. 6	,/50 c. Rs. 5,000 d. Rs. 2	21,250				
	5. How many articles (ir	n total) are sold by three	schools?				
	a. 230 b. 130 c. 430 d.	330					